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Summary

In the previous papers, it is shown that not only the position of a bottom transponder but also the
underwater acoustic velocity distribution can be determined, if the position of surface transponders and
ranges between the surface and bottom transponders are known. Also, a theoretical possibility was shown
that the position of the bottom transponder can be obtained in the order of centimeters by using
equipments available now. They were extended to three-dimensions in the third paper. More realistic
results were obtained there. In the present paper, the theory is extended to include the effects of current.
The basic nonlinear equations are obtained by a variational principle. Some two-dimensional numerical
calculations are conducted, and the convergence of the iteration calculations is verified. The numerical
results show that the effects of current can be obtained and can’t be neglected for precise positioning.

1. Introduction

In the first report, if the position of sea surface
transponders and the distance between the surface
and bottom transponders are given, not only the
position of a sea bottom transponder but also the
underwater acoustic velocity can be determined. A
division into two or three horizontal layers seems to
be sufficient for the estimation of the correct position
of the bottom transponder.

In the second report, a theoretical possibility of
obtaining the position of the sea bottom transponder
with accuracy of centimeter order by using

measuring instruments available at present is shown.

For the precise estimation of the bottom transponder
position, the simultaneous estimation of the
underwater acoustic velocity distribution and the
position of the underwater transponder is shown to
be extremely important.

In the first and second papers, two-dimensional
calculations are conducted. In the third paper, more
realistic simulations are conducted by
three-dimensional calculations. And a new idea called
MIL (Method of Incremental Layers) is introduced to
stabilize numerical calculations. Specifically, the
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number of layers is increased one by one. The initial
value of the iteration calculation is obtained from the
previous layer division. It is confirmed that MIL
improves the stability of convergence calculation.

In the previous reports, the current velocity was
taken zero. In the present paper, not only the effect of
the underwater acoustic velocity distribution but also
those of the current velocity distribution is discussed.
The basic equations are obtained, and some
numerical calculations are also conducted.

2. Basic Equations

Let x and Yy be horizontal axes and z vertical

axis as shown in Fig. 1. The underwater acoustic
velocity and current are supposed to vary as C(2)

and (U,(2),U,(2),0) for -hE£z£0, where h is
water depth. The
x=X(2), y=¥(2), (z,3 23 z,)

PalXas Yarz2)  and  Ry(%, Vb %)
variational problem4:

acoustic ray
connecting points

is solution of a
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=min (1a)
under




X(z,) =X, = given, y(z,)=y, = given,
X(z,) = %, = given, y(z,) =Y, = given
where the functional t[x,y] is time necessary for

(1b)

the acoustic wave to travel from P, to R, ,and ds
is Jd +dy® +dZ” .
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Fig. 1 Sound propagating underwater
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The Euler equations of the variational problem (1)
give

[ c(2)sina(2) +U,(2)cos2q,(2)
- 2U,(2)snq,(2)snq, (2)] /
[c@+U,@sna,(2+U (2)sina, (2)]?
= const (2a)
| c(2sinq, () +U, (2)cosm, (2)
- 2U,()sinq,(2)sing,(2)] /
e +U, @ snq,(2) +U (2)snq, ()]

= const (2b)
where

snqg,(2) =dx/ds (3a)

sing,(2) =dy/ds (3b)

Eq. (3) is nothing but Snell's law. If angle between
vectors ds and dz is denoted by | and angle
between vectors ds-dz and dx by m, relation

between q,,q, and |, mis given as

dx/ds=sdnq,(z) =snl cosm (4a)

dy/ds=sing,(z) =sinl snm (4b)

Various problems are born depending on whether
the acoustic velocity C , current velocity U ,
inclination angle q of acoustic rays and bottom

transponder position are considered known or
unknown. The problems are classified in Table 1.

3. A Numerical Procedure for
Two-Dimensional Problems

In the following, slowness S(2) is used instead of
sound velocity C(2):

S(2) =YC(2) ®)

As shown in Fig. 2, the acoustic field is divided into

horizontal layers to discretize the problem. The
discretized equations are shown below. In the

following equations, m and n refer to ray and
layer.
Snell's Law:
S,(SnGy, - S, €052,
(l+ SnUns.nqm)z
- Srwl(gnqmn+1 - S1+1Un+1 COSZanﬂ)
(1+ S1+1un+ls.nqmn+l)2
(m=0%4---,M-1 n=12--,N-1) (6)
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Fig. 2 Approximation of sound field

Table 1 Classification of problems

No. Case Acoustic Current Inclination Position of
Name Velocity C Velocity U Angle q Transponder X

1 SUTP1101 given given unknown Given

2 SUTP1100 given given unknown unknown

3 SUTP1000 given unknown unknown unknown

4 SUTP0100 unknown given unknown unknown

5 SUTP0000 unknown unknown unknown unknown




Horizontal distance between the surface and bottom
transponders:

N-1
X - Xem =@ M NG,  (M=01-M-1 (8
n=0
The Egs. (6), (7) and (8) form a closed system.
Namely, the number of unknowns
9w C,, U,, X m=0--M-1 n=0--,N-1 s
MN+2N+1. On the other hand, the number of
equations is M(N - 1) +2M . Hence, if
M =2N +1, 9)
the number of the unknowns coincides with that of
the equation.
Snell's Law given by Eq. (2) can be written as
C(2)sinq,(z) - U,(z)cos2q,(z
(254, (@)- U,(02a(d) _y () (4
[c@ +U,(2snq. )]
if the X -coordinate of the acoustic ray and the

constant of the ray are denoted as X and K((X:)
respectively. This equation gives relationship
between q(z) C(z2) U,(2 and K(X).Hence, the
unknowns ¢q,(z) can be replaced by the new
unknowns Kk,(x:) . An algorithm to eliminate q,(2)

is given in Appendix.
The nonlinear equations (6) through (8) are solved
by Newton -Raphson Method as follows.

Snell's Law:
S,(singy, - SY, cos2q,,)
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(m=0L--,M-1) (12)
Horizontal distance between the surface and bottom
transponders:

h,
Xg - Xgm T OXg = Q h, tang,, +
coom 8_11 a cos',,

(m=01---,M -ZI) (13)

da, .

4. Numerical Results in Two-Dimensional Problems

Distribution of underwater sound and current
velocity used in numerical calculations are shown in
Fig. 3. The water depth is 1000m, and the region is
divided into 40 layers.

In the following, Egs. (11) through (13) are used.
First, Problem 2 in Table 1 was solved. In this
problem, the sound and current velocities are
assumed given. The number of unknowns



A X mM=1---M, n=1.-N is MN+1, and
that of equations is M(N - 1) +2M . Hence, if

M =1 (14)
the number of the unknowns coincides that of the
equations. When the number of the acoustic rays are

bigger than one, the least square procedure is
applied.
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Fig. 3a Distribution of acoustic velocity C
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Fig. 3b Distribution of current velocity U

In the following, five rays are used. The
characteristics of the five rays are given in Table 2.
The x-coordinate d the bottom transponder X, is

assumed zero.

Table 2 Characteristics of sound rays

Ray 0 Ray 1 Ray 2 Ray 3 Ray 4
Pos. of Surface -448.880m -669.563 -943.529 -1311.899 -1854.256
Transponder
One Way Travel Time 0.744288s 0.817281 0.933793 1.120475 1.431079
Incidence Angle of Ray* 25deg 35 45 55 65
Average 24.174 33.804 43.334 52.679 61.650
* The angle between the ray and the negative z direction at the surface.
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Fig 4a Selection of deceleration coefficients a
(SUTP1100; 40 layers)
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Fig. 4 shows the results for a case where the
underwater field is divided into 40 layers. as are
deceleration coefficients in iteration procedure?-4. As
shown in Fig. 4a, a for q,, (i.e. alp_T) and that for

X (i.e. alp_D) should be different in general. The

convergence of the iteration procedure was very nice
in spite of the big number of the layer division. As
can be seen from Fig. 4e, the effect of the current
velocity on the ray trajectory seems not significant,
but the effect can't be neglected for the precise
positioning as premised in the present paper as
shown in Fig. 4f.

Fig. 4b Convergence of ray inclination angles q
(SUTP1100; 40 layers; t[m][n] denotes q,,)
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Fig. 4c Convergence of horizontal position
of bottom transponder X,
(SUTP1100; 40 layers)
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of bottom transponder X,
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Fig. 5 shows the results for a case where the
underwater field is divided into 1 layer. A comparison
of the acoustic rays and the horizontal position of the
bottom transponder between 40 layers and 1 layer
divisions is made in Table 3.

The one layer solution gives a very nice
approximation unexpectedly. The average slopes of
rays in case of 40 layers division agree very well with
those in case of 1 layer division. The horizontal
position of the bottom transponder X, in case of 1
layer division is 0.007m, where the correct value is
om.



Table 3 A comparison of the acoustic rays and the horizontal position of the bottom transponder
between 40 layers and 1 layer divisions (SUTP1100)

Ray 0 Ray 1 Ray 2 Ray 3 Ray 4 Xg
40 Incidence 25deg 35 45 55 65 Om
layers Average 24.174 33.804 43.334 52.679 61.650
1 layer 24.175 33.805 43.336 52.684 61.662 0.007

Table 4 The sound velocity, the current velocity, the rays and the horizontal position of the bottom transponder
(SUTPO0000; 1 layer)

C U Ray 0 Ray 1 Ray 2 Ray 3 Ray 4 Xg
40 layer 1473.33 1.4 24.174 33.804 43.334 52.679 61.650 Om
Average m/s m/s deg
1 layer 1473.3 1.3 24.183 33.812 43.341 52.687 61.664 0.17
Since the sound and current velocities may be
unknown in many cases, the results in these
situations are shown in Fig. 6. In Fig. 6a, alp_S,
alp_T, alp_U and alp_D denote the deceleration
coefficients for S, U, q, and X; .The sound 15
velocity, the current velocity, the rays and the
horizontal position of the bottom transponder are 3 1
summarized in Table 4. In this calculation, the layer £ I
division is one. The results seem to be reasonable, < 0%
although the precision of x; is not sufficient. To Z 0 . L A
increase the accuracy, the number of the layers must §
be increased. This problem will be discussed in the © s}
next report.
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5. Conclusion

In the previous reports, the current velocity was
assumed zero. In the present report, the theory to
include the effects of the current was constructed,
and some two-dimensional numerical calculations
were conducted. According to the results, the effects
of the current can't be neglected to realize a high
precision positioning of centimeter order necessary to
the measurements of the sea bottom crust
movements.

To introduce the effects of the currents fully, many
studies must be done. When the acoustic and current
velocities are unknowns, the most important problem
is how to solve the difficulty in convergence of
iterations as the number of the layers increases. The
results will be reported in thecoming reports.

On the other hand, an application of the present
theory to a field other than the measurements of the
sea bottom crust movements may also be pursued.
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Appendix An algorithm to eliminate q,(2)
Let C(2), U(z0 and Kk.(x)

q.(z) is obtained by solving the two-dimensional

be given. Then,

form of Eq. (2a):
C(2)sinq,(2) - U,(z) cos2q,(z)
c@ +u(2sina.@)f
Since Eg. (Al) can't be solved analytically, a
numerical  solution is obtained by using
Newton-Raphson method:
C(2)sing,(2) - U, (7 cos2q,(z)
c@ +u(2sina.@)f

N [C(2)cosq,(2) +2U, (2)sin2q,(2)]
i [c(2) +U (2)sing, ()}
-2[c(2)sinq.(2) - U,(2) cosq, ()]
[c(@ +U, (@) sinq(2)]x
U, (2)cox,(2) g _
@ +U,@snq @ 2 =0 42
The dependence between q,(z), C(z), U(z) and

=ke(Xe) (A1)

k.(x-) are obtaines by differentiating Eq. (Al) as
i [C(2)cosq,(2) +2U (2)sin2q,(2)]
|
i [C@+u,@snq@F
- Z[C(z)sinqx(z) - Ux(z)c032qx(z)]x
Uy(9)cosq(z) #

5yda, (2)
C+U,@sna,Fp -
i sing,(2)
]
ilc@ +u, (2snq (2}
_ 2c(2)sinq,(2) - ux(z)cosqu(z)]gd @
[c@+u,(2snq@f }
+I cos2q, (2)

i lc@+u (2snq, (2}
- Z[C(z)s'nqx(z) - Ux(z)cosqu(z)]x
sna,d fy
[C(z)+Ux(z)sian(z)]3'g *
=dk, (Xe) (A3)
Egs. (Al) and (A3) can be used to eliminate q,(z) .




