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S u m m a r y  

 
  In the previous papers, it is shown that not only the position of a bottom transponder but also the 
underwater acoustic velocity distribution can be determined, if the position of surface transponders and 
ranges between the surface and bottom transponders are known. Also, a theoretical possibility was shown 
that the position of the bottom transponder can be obtained in the order of centimeters by using 
equipments available now. They were extended to three-dimensions in the third paper. More realistic 
results were obtained there. In the present paper, the theory is extended to include the effects of current. 
The basic nonlinear equations are obtained by a variational principle. Some two-dimensional numerical 
calculations are conducted, and the convergence of the iteration calculations is verified. The numerical 
results show that the effects of current can be obtained and can’t be neglected for precise positioning. 

 
 

1.  Introduction  
 
  In the first report, if the position of sea surface 
transponders and the distance between the surface 
and bottom transponders are given, not only the 
position of a sea bottom transponder but also the 
underwater acoustic velocity can be determined. A 
division into two or three horizontal layers seems to 
be sufficient for the estimation of the correct position 
of the bottom transponder. 
  In the second report, a theoretical possibility of 
obtaining the position of the sea bottom transponder 
with accuracy of centimeter order by using 
measuring instruments available at present is shown. 
For the precise estimation of the bottom transponder 
position, the simultaneous estimation of the 
underwater acoustic velocity distribution and the 
position of the underwater transponder is shown to 
be extremely important. 
  In the first and second papers, two-dimensional 
calculations are conducted. In the third paper, more 
realistic simulations are conducted by 
three-dimensional calculations. And a new idea called 
MIL (Method of Incremental Layers) is introduced to 
stabilize numerical calculations. Specifically, the 

number of layers is increased one by one. The initial 
value of the iteration calculation is obtained from the 
previous layer division. It is confirmed that MIL 
improves the stability of convergence calculation. 
  In the previous reports, the current velocity was 
taken zero. In the present paper, not only the effect of 
the underwater acoustic velocity distribution but also 
those of the current velocity distribution is discussed. 
The basic equations are obtained, and some 
numerical calculations are also conducted. 
 

2.   Basic  Equations  
 
  Let x  and y  be horizontal axes and z  vertical 

axis as shown in Fig. 1. The underwater acoustic 
velocity and current are supposed to vary as )(zC  

and ( )0),(),( zUzU yx  for 0≤≤− zh , where h  is 

water depth. The acoustic ray 
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where the functional ],[ yxτ  is time necessary for 

the acoustic wave to travel from aP  to bP , and ds  

is 222 dzdydx ++ . 

 
Fig. 1  Sound propagating underwater  

 
  The Euler equations of the variational problem (1) 
give 

    [ )(2cos)()(sin)( zzUzzC xxx θθ +−  

      ])(sin)(sin)(2 zzzU yxy θθ−  

      [ ] 2)(sin)()(sin)()( zzUzzUzC yyxx θθ ++  

      const=                                  (2a) 
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where 

            dsdxzx =)(sinθ                    (3a) 

            dsdyzy =)(sinθ                    (3b) 

Eq. (3) is nothing but Snell’s law. If angle between 
vectors sd  and zd  is denoted by λ  and angle 
between vectors zs dd −  and xd  by µ , relation 

between yx θθ ,  and µλ,  is given as 

 

 

          µλθ cossin)(sin == zdsdx x           (4a) 

          µλθ sinsin)(sin == zdsdy y            (4b) 

  Various problems are born depending on whether 
the acoustic velocity C , current velocity U , 
inclination angle θ of acoustic rays and bottom 
transponder position are considered known or 
unknown. The problems are classified in Table 1. 
 

3.   A Numerical  Procedure for  
T w o-Dimensional  Problems  

 
  In the following, slowness )( zS  is used instead of 
sound velocity )( zC : 

          )(1)( zCzS =                          (5) 
  As shown in Fig. 2, the acoustic field is divided into 
horizontal layers to discretize the problem. The 
discretized equations are shown below. In the 
following equations, m  and n  refer to ray and 
layer. 
Snell’s Law:  
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Fig. 2  Approximation of sound field 

 
Table 1  Classification of problems 

 
No. Case 

Name 
Acoustic 

Velocity C  
Current 

Velocity U  
Inclination 
Angle θ  

Position of 
Transponder Bx  

1 SUTP1101 given given unknown Given 
2 SUTP1100 given given unknown unknown 
3 SUTP1000 given unknown unknown unknown 
4 SUTP0100 unknown given unknown unknown 
5 SUTP0000 unknown unknown unknown unknown 
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Horizontal distance between the surface and bottom 
transponders: 
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  The Eqs. (6), (7) and (8) form a closed system. 
Namely, the number of unknowns 

,mnθ ,nC ,nU ;Bx ,1,,0 −= Mm L 1,,0 −= Nn L  is 

12 ++ NMN . On the other hand, the number of 
equations is MNM 2)1( +− . Hence, if 
            ,12 += NM                         (9) 
the number of the unknowns coincides with that of 
the equation. 
  Snell’s Law given by Eq. (2) can be written as 
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if the x -coordinate of the acoustic ray and the 

constant of the ray are denoted as Fx  and )( Fx xk  

respectively. This equation gives relationship 

between )( zxθ ， )(zC ， )( zU x  and )( Fx xk . Hence, the 

unknowns )( zxθ  can be replaced by the new 

unknowns )( Fx xk . An algorithm to eliminate )( zxθ  

is given in Appendix. 
  The nonlinear equations (6) through (8) are solved 
by Newton -Raphson Method as follows. 
 
Snell’s Law: 
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Travel time of acoustic signal: 
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Horizontal distance between the surface and bottom 
transponders: 
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4.   Numerical  Results  in  Two-Dimensional  Problems  
 
  Distribution of underwater sound and current 
velocity used in numerical calculations are shown in 
Fig. 3. The water depth is 1000m, and the region is 
divided into 40 layers. 
  In the following, Eqs. (11) through (13) are used. 
First, Problem 2 in Table 1 was solved. In this 
problem, the sound and current velocities are 
assumed given. The number of unknowns 



,mnθ ;Bx ,,,1 Mm L= Nn ,,1 L=  is 1+MN , and 

that of equations is MNM 2)1( +− . Hence, if 
              ,1=M                          (14) 
the number of the unknowns coincides that of the 
equations. When the number of the acoustic rays are 
bigger than one, the least square procedure is 
applied. 

Fig. 3a  Distribution of acoustic velocity C  
 

 Fig. 3b  Distribution of current velocity U  
 
  In the following, five rays are used. The 
characteristics of the five rays are given in Table 2. 
The x -coordinate of the bottom transponder Bx  is 
assumed zero. 
 

Table 2  Characteristics of sound rays 
 

* The angle between the ray and the negative z  direction at the surface. 
 

Fig 4a  Selection of deceleration coefficients α  
(SUTP1100; 40 layers) 

 
  Fig. 4 shows the results for a case where the 
underwater field is divided into 40 layers. α s are 
deceleration coefficients in iteration procedure2)-4). As 
shown in Fig. 4a, α  for mnθ  (i.e. alp_T) and that for 

Bx  (i.e. alp_D) should be different in general. The 
convergence of the iteration procedure was very nice 
in spite of the big number of the layer division. As 
can be seen from Fig. 4e, the effect of the current 
velocity on the ray trajectory seems not significant, 
but the effect can’t be neglected for the precise 
positioning as premised in the present paper as 
shown in Fig. 4f. 

Fig. 4b  Convergence of ray inclination angles θ  
(SUTP1100; 40 layers; t[m][n] denotes mnθ ) 

Fig. 4c  Convergence of horizontal position  
of bottom transponder Bx  

(SUTP1100; 40 layers) 

 Ray 0 Ray 1 Ray 2 Ray 3 Ray 4 
Pos. of Surface 
Transponder 

-448.880m -669.563 -943.529 -1311.899 -1854.256 

One Way Travel Time 0.744288s 0.817281 0.933793 1.120475 1.431079 
Incidence Angle of Ray* 25deg 35 45 55 65 

Average 24.174 33.804 43.334 52.679 61.650 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 11 21 31

Iteration Step ... (-)

P
o
s.

 o
f 
B

o
tt

o
m

 T
ra

ns
po

nd
er

xB
 ..

. (
m

)

36

38

40

42

44

46

48

1 11 21 31

Iteration Step .. . (-)

T
h
e
ta

 ..
. (

d
e
g)

t[ 2][ 0] t[ 2][10]

t[ 2][20] t[ 2][30]

t[ 2][39]

0

0.2

0.4

0.6

0.8

1

1.2

1 11 21 31

Iteration Step ... (-)

D
e
c
e
le

ra
ti

o
n
 C

o
e
e
ft

. 
...

 (
-
)

alp_T alp_D

-1000

-800

-600

-400

-200

0

0 1 2 3 4 5

U ... m/s

z 
...
 m

-1000

-800

-600

-400

-200

0

1425 1450 1475 1500 1525 1550 1575

velocity C ... m/s

z 
...

 m



Fig. 4d  Convergence of ray inclination angles θ  
(SUTP1100; 40 layers) 

 
Fig. 4e  Effect of current velocity on ray trajectory 

(SUTP1100; 40 layers; Ray 4-0 and Ray-1  
denote with and without current) 

Fig. 4f  Difference between ray trajectories  
with and without current 

(SUTP1100; 40 layers; Ray 4) 
 

Fig 5a  Selection of deceleration coefficients α  
(SUTP1100; 1 layer) 

 

Fig. 5b  Convergence of ray inclination angles θ  
(SUTP1100; 1 layer; t[m][n] denotes mnθ ) 

 
Fig. 5c  Convergence of horizontal position 

of bottom transponder Bx  
(SUTP1100; 1 layer) 

 
 
 
 
 
  Fig. 5 shows the results for a case where the 
underwater field is divided into 1 layer. A comparison 
of the acoustic rays and the horizontal position of the 
bottom transponder between 40 layers and 1 layer 
divisions is made in Table 3. 
  The one layer solution gives a very nice 
approximation unexpectedly. The average slopes of 
rays in case of 40 layers division agree very well with 
those in case of 1 layer division. The horizontal 
position of the bottom transponder Bx  in case of 1 
layer division is 0.007m, where the correct value is 
0m. 
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Table 3  A comparison of the acoustic rays and the horizontal position of the bottom transponder  
between 40 layers and 1 layer divisions (SUTP1100) 

 
 Ray 0 Ray 1 Ray 2 Ray 3 Ray 4 

Bx  
Incidence 25deg 35 45 55 65 40 

layers Average 24.174 33.804 43.334 52.679 61.650 
0m 

1 layer 24.175 33.805 43.336 52.684 61.662 0.007 
 

Table 4  The sound velocity, the current velocity, the rays and the horizontal position of the bottom transponder 
(SUTP0000; 1 layer) 

 
 C U Ray 0 Ray 1 Ray 2 Ray 3 Ray 4 

Bx  

40 layer 
Average 

1473.33 
m/s 

1.4 
m/s 

24.174 
deg 

33.804 43.334 52.679 61.650 0m 

1 layer 1473.3 1.3 24.183 33.812 43.341 52.687 61.664 0.17 
 

 
  Since the sound and current velocities may be 
unknown in many cases, the results in these 
situations are shown in Fig. 6. In Fig. 6a, alp_S, 
alp_T, alp_U and alp_D denote the deceleration  
coefficients for mS , mU  mnθ  and Bx .The sound 

velocity, the current velocity, the rays and the 
horizontal position of the bottom transponder are 
summarized in Table 4. In this calculation, the layer 
division is one. The results seem to be reasonable, 
although the precision of Bx  is not sufficient. To 
increase the accuracy, the number of the layers must 
be increased. This problem will be discussed in the 
next report. 

 
Fig 6a  Selection of deceleration coefficients α  

(SUTP0000; 1 layer) 

Fig. 6b  Convergence of sound velocity C  
(SUTP000; 1 layer) 

 
 
 
 

Fig. 6c  Convergence of current velocity U  
(SUTP0000; 1 layer) 

 

 
Fig. 6d  Convergence of ray inclination angles θ  

(SUTP0000; 1 layer; t[m][n] denotes mnθ ) 
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Fig. 6e  Convergence of horizontal position 
of bottom transponder Bx  

 (SUTP0000; 1 layer) 
 

5.   Conclusion  
 
  In the previous reports, the current velocity was 
assumed zero. In the present report, the theory to 
include the effects of the current was constructed, 
and some two-dimensional numerical calculations 
were conducted. According to the results, the effects 
of the current can’t be neglected to realize a high 
precision positioning of centimeter order necessary to 
the measurements of the sea bottom crust 
movements. 
  To introduce the effects of the currents fully, many 
studies must be done. When the acoustic and current 
velocities are unknowns, the most important problem 
is how to solve the difficulty in convergence of 
iterations as the number of the layers increases. The 
results will be reported in the coming reports. 
  On the other hand, an application of the present 
theory to a field other than the measurements of the 
sea bottom crust movements may also be pursued. 
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Appendix  An algorithm to el iminate )(zxθ  

  Let )(zC ,  )(zU  and )( Fx xk  be given. Then, 

)( zxθ  is obtained by solving the two-dimensional 

form of Eq. (2a): 
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Since Eq. (A1) can’t be solved analytically, a 
numerical solution is obtained by using 
Newton-Raphson method:  
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  The dependence between )(zxθ ,  )(zC ,  )(zU  and 

)( Fx xk  are obtaines by differentiating Eq. (A1) as 
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    )( Fx xdk=                                 (A3) 

Eqs. (A1) and (A3) can be used to eliminate )( zxθ .  
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